Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 156: 59-70, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032039

RESUMO

Viral diseases are the most serious threat to the expansion and development of shrimp aquaculture. Rapid diagnosis of the white spot syndrome virus (WSSV), a lethal shrimp pathogen, is essential to restrict its spread and reduce the mortality of infected shrimp. This virus has globally affected the shrimp farming industry, with a devastating economic impact. Several studies have focused on the expression of WSSV transcripts to understand the molecular mechanisms governing the pathological development of the disease. Since gene expression studies and molecular diagnostics at the early stages of infection depend on the efficient isolation of high-quality RNA, the extraction methods should be carefully selected. However, previous comparisons of the performance of RNA isolation kits have yet to be systematically investigated. In this study, 5 commercial RNA extraction methods were compared in WSSV-infected shrimp. The highest total RNA yield (ng mg-1 tissue) was obtained using TRIzol. Even though the 260/280 nm absorption ratios showed significant differences, the methods showed good purity values (>2.0). RNA integrity was evaluated in a denaturing agarose gel electrophoresis, and degradation was observed after the total RNA samples were treated with DNase I. Finally, the method that allowed the earlier detection of WSSV transcripts by qRT-PCR was the Zymo Direct-zol RNA MiniPrep kit. This study shows that the amount of observed (or estimated) WSSV transcripts might be affected because of the RNA isolation method. In addition, these results may contribute to improve the accuracy of the results obtained in gene expression studies, for more sensitive and robust detection of WSSV.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Reação em Cadeia da Polimerase/veterinária , Crustáceos , RNA , Aquicultura
2.
J Exp Zool A Ecol Integr Physiol ; 339(3): 239-252, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36470843

RESUMO

The jellyfish genera Stomolophus spp. is one of the most abundant in the Pacific Ocean, yet it has not been thoroughly studied. Until recently, research has been developed and directed to its knowledge because of the economic interest in its exploitation. The genus Stomolophus in the Pacific Ocean is composed of five species (S. agaricus, S. chunii, S. collaris, S. fritillaria, and S. meleagris), and Stomolophus sp. 2 has been recently reported in the central part of the Gulf of California. Therefore, this study aimed to describe in vivo the different developmental stages of Stomolophus sp. 2 life cycle. As a result, multiple polyp reproduction forms were described, such as polyp-stolon formation, polydisc strobilation with more than 20 ephyrae formed by each strobila, and polyp formation directly from juvenile ephyra. In the degenerating phase, the polyps turned into cysts induced by stress conditions, such as changes in temperature, oxygen, and food availability. The life cycle of Stomolophus sp. 2 can be distinguished from that of S. meleagris by showing various asexual reproduction mechanisms and polydisc-like strobilation. The formation of polyps directly from the ectoderm of degenerating juvenile medusae suggests the possibility of a reversion cycle. Because of the different life cycles between S. meleagris and S. sp. 2, in addition to their morphological and genetic differences, this study proposes that Stomolophus sp. 2 should be considered a new species and suggests the name Stomolophus yaquilli, in reference to the indigenous community that lives in the species distribution area.


Assuntos
Estágios do Ciclo de Vida , Cifozoários , Animais , Cifozoários/genética , Temperatura , Alimentos , Reprodução
3.
Mar Biotechnol (NY) ; 24(3): 480-491, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384610

RESUMO

Scientific studies about decapod crustaceans' digestive physiology have increased, being an important topic with novel results in the last years. This revision aims to show how the study of crustacean peptidases has evolved, from the classical biochemical characterization studies to the assessment of their usefulness in biotechnological and industrial processes, with emphasis on commercial species of interest to world aquaculture and fisheries. First studies determined the proteolytic activity of the midgut gland crude extracts and evaluated the optimum biochemical properties of specific enzymes. Peptidase's identity was determined using inhibitors and specific protein substrates on tube tests and electrophoresis gels. Later, various studies focused on the characterization of purified peptidases and their gene expression. Recently, the integrated mechanisms of enzyme participation during the digestive process of food protein have been established using novel techniques. Scientific research has revealed some of the potential biotechnological applications of crustacean peptidases in the food industry and other processes. However, the knowledge field is enormous, and there is much to explore and study in the coming years.


Assuntos
Biotecnologia , Peptídeo Hidrolases , Aquicultura , Pesqueiros , Peptídeo Hidrolases/metabolismo , Proteólise
4.
J Anim Sci Technol ; 64(1): 52-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35174342

RESUMO

Ferulic acid (FA) is a phytochemical with various bioactive properties. It has recently been proposed that due to its phytogenic action it can be used as an alternative growth promoter additive to synthetic compounds. The objective of the present study was to evaluate the growth performance, carcass traits, fiber characterization and skeletal muscle gene expression on hair-lambs supplemented with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were individually housed during a 32 d feeding trial to evaluate the effect of FA (300 and 600 mg d-1) or zilpaterol hydrochloride (ZH; 6 mg d-1) on growth performance, and then slaughtered to evaluate the effects on carcass traits, and muscle fibers morphometry from Longissimus thoracis (LT) and mRNA abundance of ß2-adrenergic receptor (ß2-AR), MHC-I, MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with respect to non-supplemented animals (p < 0.05). The ZH supplementation increased LT muscle area, with respect to FA doses and control (p < 0.05). Cross-sectional area (CSA) of oxidative fibers was larger with FA doses and ZH (p < 0.05). Feeding ZH increased mRNA abundance for ß2-AR compared to FA and control (p < 0.05), and expression of MHC-I was affected by FA doses and ZH (p < 0.05). Overall, FA supplementation of male hair lambs enhanced productive variables due to skeletal muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has the potential like a growth promoter in lambs.

5.
Animals (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438911

RESUMO

FA dietary supplementation on the growth performance, carcass traits and histochemical characteristics of the Longissimus thoracis muscle from finishing pigs was investigated. Four hundred and twenty pigs were used in this study, and 105 animals (with five replicate pens and 21 pigs per pen) were assigned to one of four treatments: basal diet (BD) without additives (C-); BD + 10 ppm ractopamine hydrochloride + 0.97% lysine (C+); BD + 25 ppm of FA (FA); and BD + 25 ppm of FA + 0.97% lysine (FA-Lys). Dietary supplementation with FA or ractopamine increased both the average daily gain (14%) and loin muscle area (19%), while fat deposition decreased by 53%, in comparison with C- (p < 0.05). The growth performance of pigs treated with FA was similar to those of ractopamine (p > 0.05). The histochemical analysis showed that FA and C+ treatments induced a shift in muscle fiber types: from fast fibers to intermediate (alkaline ATPase) and from oxidative to glycolytic fibers. Muscle tissues from animals treated with FA or ractopamine had a lower cross-sectional area and a greater number of muscle fibers per area (p < 0.05). Findings regarding growth performance and carcass traits indicate that FA supplementation at 25 ppm without extra-lysine can replace the use of ractopamine as a growth promoter in finishing pigs.

6.
J Comp Physiol B ; 191(4): 629-644, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895873

RESUMO

In most eukaryotic organisms, mitochondrial uncoupling mechanisms control ATP synthesis and reactive oxygen species production. One such mechanism is the permeability transition of the mitochondrial inner membrane. In mammals, ischemia-reperfusion events or viral diseases may induce ionic disturbances, such as calcium overload; this cation enters the mitochondria, thereby triggering the permeability transition. This phenomenon increases inner membrane permeability, affects transmembrane potential, promotes mitochondrial swelling, and induces apoptosis. Previous studies have found that the mitochondria of some crustaceans do not exhibit a calcium-regulated permeability transition. However, in the whiteleg shrimp Litopenaeus vannamei, contradictory evidence has prevented this phenomenon from being confirmed or rejected. Both the ability of L. vannamei mitochondria to take up large quantities of calcium through a putative mitochondrial calcium uniporter with conserved characteristics and permeability transition were investigated in this study by determining mitochondrial responses to cations overload. By measuring mitochondrial swelling and transmembrane potential, we investigated whether shrimp exposure to hypoxia-reoxygenation events or viral diseases may induce mitochondrial permeability transition. The results of this study demonstrate that shrimp mitochondria take up large quantities of calcium through a canonical mitochondrial calcium uniporter. Neither calcium nor other ions were observed to promote permeability transition. This phenomenon does not depend on the life cycle stage of shrimp, and it is not induced during hypoxia/reoxygenation events or in the presence of viral diseases. The absence of the permeability transition phenomenon and its adaptive meaning are discussed as a loss with biological advantages, possibly enabling organisms to survive under harsh environmental conditions.


Assuntos
Mitocôndrias , Penaeidae , Animais , Cálcio/metabolismo , Hipóxia/metabolismo , Membranas Mitocondriais , Permeabilidade
7.
Meat Sci ; 177: 108490, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744607

RESUMO

Muscle fiber morphometry and physicochemical characteristics were evaluated in LT muscles obtained from entire male lambs treated with zilpaterol hydrochloride (ZH, 0 and 0.15 mg/kg body weight) and/or steroidal implant (SI, with and without trenbolone acetate/estradiol). ZH and SI acted synergistically to increase LT area, type-IIb fiber cross-sectional area and soluble collagen content, likewise to decrease metmyoglobin concentration and insoluble collagen content. Ash content and ultimate pH showed a decrease due to an antagonistic effect between ZH and SI. Content of total collagen, protein, fat, moisture, oxidized lipids and water-holding capacity were unaffected by ZH and SI. Supplemental ZH, but not SI, decreased all color parameters and tended to increase shear force. Overall, the SI implantation of male lambs followed by a ZH supplementation promoted greater LT hypertrophy, without affecting protein and fat content, and physicochemical characteristics in their meat.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Carne Vermelha/análise , Compostos de Trimetilsilil/farmacologia , Adrenérgicos/farmacologia , Animais , Cor , Estradiol/farmacologia , Masculino , Músculos Paraespinais/anatomia & histologia , Músculos Paraespinais/química , Resistência ao Cisalhamento , Carneiro Doméstico , Acetato de Trembolona/farmacologia
8.
Probiotics Antimicrob Proteins ; 13(4): 1033-1043, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512646

RESUMO

Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 µmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.


Assuntos
Aflatoxina B1 , Lacticaseibacillus casei , Mitocôndrias , Estresse Oxidativo , Probióticos , Aflatoxina B1/toxicidade , Animais , Antioxidantes , Peróxido de Hidrogênio , Mitocôndrias/fisiologia , Ratos
9.
Biochim Biophys Acta Bioenerg ; 1861(8): 148209, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305415

RESUMO

Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.


Assuntos
Proteínas de Desacoplamento Mitocondrial/metabolismo , Penaeidae , Animais , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
10.
AMB Express ; 10(1): 31, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048056

RESUMO

Staphylococcus epidermidis is a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin that becomes a health hazard when it is carried across the skin through punctures or wounds. Pathogenicity is enhanced by the ability of S. epidermidis to associate into biofilms, where it avoids attacks by the host and antibiotics. To test the effect of oxygen on metabolism and biofilm generation, cells were cultured at different oxygen concentrations ([O2]). As [O2] decreased, S. epidermidis metabolism went from respiratory to fermentative. Remarkably, the rate of growth decreased at low [O2] while a high concentration of ATP ([ATP]) was kept. Under hypoxic conditions bacteria associated into biofilms. Aerobic activity sensitized the cell to hydrogen peroxide-mediated damage. In the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that at low [O2] S. epidermidis limits its growth and develops the ability to form biofilms.

11.
Meat Sci ; 158: 107890, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31382221

RESUMO

Forty hairbreed male lambs were used to evaluate the effects of zilpaterol hydrochloride (ZH, 0 and 0.15 mg/kg BW) and steroid implant (SI, without and with 52.5 mg trenbolone acetate and 7.5 mg 17ß-estradiol) on feedlot performance, carcass characteristics, non-carcass components, wholesale cut yield, and meat quality. Supplemental ZH increased growth rate, feed efficiency, carcass weight, and dressing percentage, with no effect on wholesale cut yields. Feeding ZH increased muscle pH at 24 h. Supplemental ZH increased meat shear force, but decreased lightness, redness, and yellowness after frozen storage followed by a 14-day aging period. The SI administration increased dressing percentage and neck yield, but decreased testicle weight and meat redness, without affecting other variables. The LT area was greater with ZH + SI administration than with individual application of ZH or SI. Compared to individual administration, simultaneous application of ZH and SI did not result in improved growth performance, carcass traits and wholesale cut yields in hairbreed male lambs.


Assuntos
Estrogênios/farmacologia , Carne Vermelha/normas , Carneiro Doméstico/crescimento & desenvolvimento , Compostos de Trimetilsilil/farmacologia , Adrenérgicos/farmacologia , Anabolizantes/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Composição Corporal/fisiologia , Dieta/veterinária , Estradiol/farmacologia , Armazenamento de Alimentos , Congelamento , Masculino , Músculo Esquelético/química , Acetato de Trembolona/farmacologia
12.
J Bioenerg Biomembr ; 51(2): 103-119, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796582

RESUMO

Mitochondrial uncoupling proteins (UCP) transport protons from the intermembrane space to the mitochondrial matrix uncoupling oxidative phosphorylation. In mammals, these proteins have been implicated in several cellular functions ranging from thermoregulation to antioxidant defense. In contrast, their invertebrate homologs have been much less studied despite the great diversity of species. In this study, two transcripts encoding mitochondrial uncoupling proteins were, for the first time, characterized in crustaceans. The white shrimp Litopenaeus vannamei transcript LvUCP4 is expressed in all tested shrimp tissues/organs, and its cDNA includes a coding region of 954 bp long which encodes a deduced protein 318 residues long and a predicted molecular weight of 35.3 kDa. The coding region of LvUCP5 transcript is 906 bp long, encodes a protein of 302 residues with a calculated molecular weight of 33.17 kDa. Both proteins share homology with insect UCPs, their predicted structures show the conserved motifs of the mitochondrial carrier proteins and were confirmed to be located in the mitochondria through a Western blot analysis. The genic expression of LvUCP4 and LvUCP5 was evaluated in shrimp at oxidative stress conditions and results were compared to some antioxidant enzymes to infer about their antioxidant role. LvUCP4 and LvUCP5 genes expression did not change during hypoxia/re-oxygenation, and no coordinated responses were detected with antioxidant enzymes at the transcriptional level. Results confirmed UCPs as the first uncoupling mechanism reported in this species, but their role in the oxidative stress response remains to be confirmed.


Assuntos
Proteínas de Artrópodes/biossíntese , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/biossíntese , Penaeidae/metabolismo , Animais , Proteínas de Artrópodes/genética , Mitocôndrias/genética , Proteínas de Desacoplamento Mitocondrial/genética , Especificidade de Órgãos/fisiologia , Penaeidae/genética
13.
J Bioenerg Biomembr ; 50(2): 143-152, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29594796

RESUMO

Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.


Assuntos
Artemia/química , Transporte de Elétrons , Mitocôndrias/metabolismo , Consumo de Oxigênio , Penaeidae/química , Adaptação Fisiológica , Animais , Glicerolfosfato Desidrogenase , Mitocôndrias/química , Proteínas Mitocondriais , Oxirredução , Oxirredutases , Proteínas de Plantas , Especificidade por Substrato
14.
Mar Genomics ; 37: 74-81, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28923556

RESUMO

Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies.


Assuntos
Desintoxicação Metabólica Fase II/genética , Desintoxicação Metabólica Fase I/genética , Palaemonidae/genética , Palaemonidae/metabolismo , Transcriptoma , Animais , Argentina , Biomarcadores/análise
15.
Cell Stress Chaperones ; 22(6): 879-891, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28646424

RESUMO

Crustaceans are intensively farmed in aquaculture facilities where they are vulnerable to parasites, bacteria, or viruses, often severely compromising the rearing success. The ubiquitin-proteasome system (UPS) is crucial for the maintenance of cellular integrity. Analogous to higher vertebrates, the UPS of crustaceans may also play an important role in stress resistance and pathogen defense. We studied the general properties of the proteasome system in the hemocytes of the whiteleg shrimp, Penaeus vannamei, and the European brown shrimp Crangon crangon. The 20S proteasome was the predominant proteasome population in the hemocytes of both species. The specific activities of the trypsin-like (Try-like), chymotrypsin-like (Chy-like), and caspase-like (Cas-like) enzymes of the shrimp proteasome differed between species. P. vannamei exhibited a higher ratio of Try-like to Chy-like activities and Cas-like to Chy-like activities than C. crangon. Notably, the Chy-like activity of P. vannamei showed substrate or product inhibition at concentrations of more than 25 mmol L-1. The K M values ranged from 0.072 mmol L-1 for the Try-like activity of P. vannamei to 0.309 mmol L-1 for the Cas-like activity of C. crangon. Inhibition of the proteasome of P. vannamei by proteasome inhibitors was stronger than in C. crangon. The pH profiles were similar in both species. The Try-like, Chy-like, and Cas-like sites showed the highest activities between pH 7.5 and 8.5. The proteasomes of both species were sensitive against repeated freezing and thawing losing ~80-90% of activity. This study forms the basis for future investigations on the shrimp response against infectious diseases, and the role of the UPS therein.


Assuntos
Citoplasma/genética , Penaeidae/genética , Complexo de Endopeptidases do Proteassoma/genética , Estresse Fisiológico/genética , Animais , Citoplasma/química , Hemócitos/metabolismo , Ubiquitina/genética
16.
J Anim Sci Technol ; 59: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428891

RESUMO

Growth promoters have been widely used as a strategy to improve productivity, and great benefits have been observed throughout the meat production chain. However, the prohibition of growth promoters in several countries, as well as consumer rejection, has led industry and the academy to search for alternatives. For decades, the inclusion of phytochemicals in animal feed has been proposed as a replacement for traditional growth promoters. However, there are many concerns about the application of phytochemicals and their impact on the various links in the meat production chain (productive performance, carcass and meat quality). Therefore, the effects of these feed additives are reviewed in this article, along with their potential safety and consumer benefits, to understand the current state of their use. In summary, the replacement of traditional growth promoters in experiments with broilers yielded benefits in all aspects of the meat production chain, such as improvements in productive performance and carcass and meat quality. Although the effects in pigs have been similar to those observed in broilers, fewer studies have been carried out in pigs, and there is a need to define the types of phytochemicals to be used and the appropriate stages for adding such compounds. In regard to ruminant diets, few studies have been conducted, and their results have been inconclusive. Therefore, it is necessary to propose more in vivo studies to determine other strategies for phytochemical inclusion in the production phases and to select the appropriate types of compounds. It is also necessary to define the variables that will best elucidate the mechanism(s) of action that will enable the future replacement of synthetic growth promoters with phytochemical feed additives.

17.
J Bioenerg Biomembr ; 47(5): 383-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302886

RESUMO

The whiteleg shrimp species Litopenaeus vannamei is exposed to cyclic changes of the dissolved oxygen concentration of seawater and must neutralize the adverse effects of hypoxia by using ATP as energy source. In crustaceans, the mitochondrial FOF1-ATP synthase is pivotal to the homeostasis of ATP and function prevalently as a FOF1-ATPase. Hitherto, it is unknown whether these marine invertebrates are equipped with molecules able to control the FOF1-ATPase inhibiting the ATP consumption. In this study, we report two variants of the mitochondrial FOF1-ATPase Inhibitory Factor 1 (IF1) ubiquitously expressed across tissues of the Litopenaeus vannamei transcriptome: the IF1_Lv1 and the IF1_Lv2. The IF1_Lv1, with a full-length sequence of 550 bp, encodes a 104 aa long protein and its mRNA amounts are significantly affected by hypoxia and re-oxygenation. The IF1_Lv2, with a sequence of 654 bp, encodes instead for a protein of 85 aa. Both proteins share a 69 % homology and contain a conserved minimal inhibitory sequence (IATP domain) along with a G-rich region on their N-terminus typical of the invertebrate. In light of this characterization IF1 is here discussed as an adaptive mechanism evolved by this marine species to inhibit the FOF1-ATPase activity and avoid ATP dissipation to thrive in spite of the changes in oxygen tension.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Sequência de Bases , Dados de Sequência Molecular , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteína Inibidora de ATPase
18.
Artigo em Inglês | MEDLINE | ID: mdl-26219579

RESUMO

Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Decápodes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Betaína-Aldeído Desidrogenase/química , DNA Complementar/química , DNA Complementar/genética , Decápodes/enzimologia , Decápodes/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Pressão Osmótica , RNA Mensageiro/metabolismo
19.
J Bioenerg Biomembr ; 47(3): 223-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731176

RESUMO

The mitochondrial FOF1 ATP synthase produces ATP in a reaction coupled to an electrochemical proton gradient generated by the electron transfer chain. The enzyme also hydrolyzes ATP according to the energy requirements of the organism. Shrimp need to overcome low oxygen concentrations in water and other energetic stressors, which in turn lead to mitochondrial responses. The aim of this study was to characterize the full-length cDNA sequences of three subunits that form the central stalk of the F1 catalytic domain of the ATP synthase of the white shrimp Litopenaeus vannamei and their deduced proteins. The effect of hypoxia on shrimp was also evaluated by measuring changes in the mRNA amounts of these subunits. The cDNA sequences of the nucleus-encoded ATPγ, ATPδ and ATPε subunits are 1382, 477 and 277 bp long, respectively. The three deduced amino acid sequences exhibited highly conserved regions when compared to homologous sequences, and specific substitutions found in shrimp subunits are discussed through an homology structural model of F1 ATP-synthase that included the five deduced proteins, which confirm their functional structures and specific characteristics from the cognate complex of ATP synthases. Genes expression was evaluated during hypoxia-reoxygenation, and resulted in a generalized down-regulation of the F1 subunits and no coordinated changes were detected among these five subunits. The reduced mRNA levels suggest a mitochondrial response to an oxidative stress event, similar to that observed at ischemia-reperfusion in mammals. This model analysis and responses to hypoxia-reoxygenation may help to better understand additional mitochondrial adaptive mechanisms.


Assuntos
Trifosfato de Adenosina/biossíntese , Hipóxia Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Penaeidae/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Perfilação da Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/química , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Appl Biochem Biotechnol ; 174(7): 2368-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245677

RESUMO

Marine viruses are ubiquitous, extremely diverse, and outnumber any form of life in the sea. Despite their ecological importance, viruses in marine environments have been largely ignored by the academic community, and only those that have caused substantial economic losses have received more attention. Fortunately, our current understanding on marine viruses has advanced considerably during the last decades. These advances have opened new and exciting research opportunities as several unique structural and genetic characteristics of marine viruses have shown to possess an immense potential for various biotechnological applications. Here, a condensed overview of the possibilities of using the enormous potential offered by marine viruses to develop innovative products in industries as pharmaceuticals, environmental remediation, cosmetics, material sciences, and several others, is presented. The importance of marine viruses to biotechnology should not be underestimated.


Assuntos
Organismos Aquáticos/fisiologia , Biotecnologia/métodos , Biotecnologia/tendências , Fenômenos Fisiológicos Virais , Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...